본문 바로가기

트렌드 한눈에 보기/학계 트렌드

MIT, Harry Asada, "Identification Estimation and Learning" 강의 정리 3: Recursive Least Squares with Forgetting Factor

 Recursive란, 실시간으로 데이터가 들어오는 상황을 의미한다. Linear Regression이라고 하면, 주어진 데이터셋을 최대한으로 설명하는 지표들을 뽑아내는 것을 상상하기 쉬운데, 실제 공학에서는 실시간으로 데이터를 처리해야 하는 때가 수두룩하다. 그럴 때 쓰이는 칼만 필터나, complementary filter나, 모두 recursive algorithm으로 분류가 되고, 특히 칼만 필터는 Least Squares에 바탕을 두고 있음이 지난 강의를 통해 드러났다. 중요하기 짝이 없는 내용이지만, 지난 강의에 비해 집중력이 많이 떨어졌다. 그래도 들었다는 사실을 정리하기 위해 내용을 기록해본다.